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NOTE ON THE CALCULATION OF RESISTANCE AND FLEXURE OF SOLID /2
STRUCTURAL PARTS WITH SINGLE AND DOUBLE CURVATURE, WITH ‘
CONSIDERATION OF THE VARIOUS FORCES ACTING ON THE PARTS

IN ALL DIRECTIONS

Barré de Saint-Venants

:2‘§L’8¢7
The theories of Navier, covering only the case of stress in
single~curvature solid structural members is rectified and
extended to double-curvature parts subjected to simultaneous
torsion and flexure, including interaction of the individual
fibers and cross sections. Equations of equilibrium for ex-
ternal and internal forces, with emphasis on dilatation and
slip, are given indicating the numerical maximm for the
various forces in members with free and clamped end. A
general method is developed for determining unknown reactions
and interactions in any system of solid bodies, which sub-~
divides the member into individual elements and thus defines
the forces involved by no more than six indeterminates,

eliminating the Poisson transcendental discontinﬁity formulas,

Section 1. Introduction

1. By means of expressing the equilibrium of external forces acting on a
solid body by the internal forces that manifest themselves across one of its
transverse sections it is possible to determine the magnitude of dilatations and

contractions undergone by the various parts of the body; on the one hand, this

* Author's excerpt; commissaries: Cauchy, Poncelet, Piobert, Lame.

8¢ Numbers in the margin indicate pagination in the original foreign text.
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permits defining the conditions of the resistance of the body to given forces
and, on the other hand, to calculate - if required - the displacements of its
points and the deformations resulting from this.

However, it is known that the equilibrium of forces in space is generally 2
éxpressed by six equations, three of which are equations of components and threé
of moments. Despite this fact, the present theory on the resistance of solid |
bodies, represented by the highly useful and important work done by Navier, [2&3
never uses more than two equations.

Could this be due to the fact that this theory is always limited to cases
for which the other four equations do not exist? This question must be answered
in the negative since not only does this theory disregard (for example) the casé
6f double-curvature curves, the case of a body which simultaneously is bent andi
twisted, etc. but it also disregards, in the treated cases, some of the most |
basic circumstances.

In addition, this particular theory assumes that all plane sections remainj
plane and that the individual fibers into which the body is imagined to be sub-i
divided behave as though they were isolated or without mutual interaction. How-~
ever, recent research, based on exactly this work by Navier and confirmed in ex-
periments by Savart and Cagniard de latour, makes it quite impossible to accept .
these two hypotheses in quite a few cases.

Another objection to this theory is its -~ at least apparently - complexity
since it always gives the computation of displacement of the points before the
conditions of nonrupture; however, such computation is useless in most of the
cases, making it preferable to simply derive the equations of resistance that

are of greatest importance for practical use.

Finally, the theory does not furnish a general method for determining the
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reactions of fixed points or the unknown mutual interaction of various parts of:
the :

é§§ne system; from this it follows that Navier, while resolving in an entirely

satisfactory manner many cases which previously had remained unsolved, finally é
returned ~ for many other cases - to purely hypothetical resolutions of the ‘
forces which had been entirely adequate before Navier's time. |

In my report I am making an attempt to fill these voids, to correct the in%
accuracies, and to eliminate any useless complication. I also included in the
calculation the effects of lateral slip due to these transverse components,
whose omission had been the main point in the objection made by Vicat to the
entire theory of the resistance of solids. I will demonstrate that, by means o£
a second equation of transverse moments, this general case mentioned by Persy
can be solved quite simply, where the conventionally posed equilibrium no longer
exists and where the flexure of the body occurs necessarily in a direction dif-
ferent from that at which it had been subject to bending. I will also extend
the resistance calculations to cases of simultaneous flexure and torsion which 3
are frequently encountered when taking into consideration that a twisted speci-‘
men has almost never suffered this torsion by a so-called couple. I will also
take into éonsideration that the plane sections become skewed and that they in—j
cline slightly with respect to the central fibers which latter exert a mutual
interaction which cannot be neglected. I will also furnish new differential
equations for minor displacements of specimens with double curvature and set /QLL
up extremely simple integrals derived from these three similtaneous equations of
the third order with nonconstant coefficients.

In addition, practical application exampleé will be given for most of the
new formulas, followed by a general method for determining the reactions and in-

teractions which cannot be derived from the given forces by ordinary equations




of statics: I believe that if a certain effort is made to establish and solve
all these equations, although they are numerous but all of the first degree,
which result from this method in all cases, then the expression for the condi- E
tions of resistance in any framework system will contain just as few indeterminf

ate and arbitrary quantities as those referring to suspension bridges¥.

Section 2. Equations of Equilibrium for Interior and Exterior Forces

2. By the term dilatation, we will understand here, in the direction of a z
short material straight line at the interior of the body, the degree of elonga—?
tion (positive or negative) suffered by this straight line due to displacements,
of the molecules. The term slip, on a small plane material surface, is to mean;
the inclination assumed by a straight line to this surface which, originally, |
had been perpendicular: The motion of the surface contributes to the slip as
does the motion of the straight line. ” ]

Let ® denote one of the transverse sections of a solid bedy, normal to theé
straight axis or curve that connects their centers of gravity,

Let u and v be the coordinates of the center m of the element d» with re- .
spect to the two principal inertia axes of the section passing through the
center of gravity M.

Let r be the distance Mm.

Let 9 be the longitudinal dilatation suffered by one fiber or by a prisma-‘
tic portion of the body, almost parallel to the axis, having d» as base and
terminating at a second close-by section o',

3 A portion of the formulas and methods in this report were furnished in 1837
and 1838 to students of the Mechanical Engineering College (bridges and high-

ways) in the course of applied mechanics which I conducted on suggestion of
Mr,Coriolis. i



let g be the slip on the section w at the point m.
Let g', g" be this same slip estimated parallel to the two principal axes ?

of u and v.

Let A%, g, g, g be the values of these quantities for u = 0, v= Q. [Qéj

Let u = [ V¥dw, u' = f W dw be the moments of inertia of the section w |
about the axis of u and the axis of v.

Despite the negligible inclination of the fibers on these two sections, ité
is quite obvious that, by neglecting the extremely small quantities of higher
order as well as the minor influence of the curvature of the sections on the
length of the fibers (see below), the expression of this length between the two:
sections would be of the first degree in u and v, before as well as after the
displacements; the same statement holds for the dilatation. Consequently, the %

'following expression is obtained for the latter:
Y= tau+ b (1)

The slip at the point m is due to the following causes: 1) The section «'
has turned through a small angle with respect to the section w; if © is the quo%
tient of this small angle by the distance of the two sections, then 8r will be -
the inclination acquired, on the axis of the member, by the previous normal to :
the section w at the point m, which leads to projections 8v, -8u on two planes
.perpendicular to w and passing through the axes of u and v. 2) The axis itself:
bis inclined, on the section, by a small angle g, whose projections onto the
same planes are denoted by gg, gg. 3) This surface has become skewed. It can :
be readily demonstrated, on the basis of a few examples, that, if w is the van-:
ishingly short distance of a point on this surface from its central tangential
plane, its form must be of the type represented by the equation w = yuv (approx-
imately a double windmill sailL which also results from an analysis by Cauchy;
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thus, the share of the skewing in the slip, estimated in accordance with the
directions of u and v, can be represented approximately by -yYv, -Yu.
Consequently, E
=gl —, gF=g, —bu—qu | |
vHowever, the skewing Y and the torsion & are n§t indépendent of each other.
‘Cauchy as well as myself have found, for a rectangular section and by applying E

his analysis to a section of a different form, that

r=0ige

from which it follows that .
2P eu_ \

Y —
. a¥ gy, §T8T prE (2)
g‘:‘-go*p-\’l‘ _ : ‘ : i

3. Let now r, be the sum of the components, parallel to the tangent [gﬁé
to the axis of the member at the point M, of all the forces acting from this
point up to the extremities of the structural member.

let P,, Py be the same components in the direction of the principal axes
My, My of the section.
| Let M@, M., My be the sums of the moments of the same forces about the
three same rectangular lines.
| let E be the coefficient by which the dilatation of an isolated prism,
with a base of 1 i, must be multiplied for obtaining the forces able to pro-
duce dilatation.

let G be the coefficient of the same type, with respect to the slip.

let m,, ™, be the lateral pressures to which the fiber under consideration
can be subjected on its two faces perpendicular to u and to v per unit surface.
Let us neglect the rare case (as also the case of considerable friction exerted

on the sides of the specimen) where these pressures are no longer perpendicular
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to the fibers.

Let us assume that the force able to produce dilatation of the fiber will
be Edw(aO + au + bv) without the pressures m,, TMy; however, it is known that
these two forces each generate a longitudinal dilatation equal to one quarter
of the lateral contraction that they are able to produce (in this discussion, I

restrict myself to the case of an elasticity equal in all directions); conse-

quently, the longitudinal force will only be
[EQo + au + b¢) — £(m + n,))dw. (3)

This force, assuming in first approximation that m,, ™y are functions of the
first degree of u and v, will then be written as follows:

E (3, + du + &) l\! (l!—)lf
The transverse interior forces are obtained on multiplying the expressions (2)

by Gdw.

Thus, using the sums of the components and moments of the interior forces

with respect to the same axes as the exterior forces, we will obtain the follow%

ing expression for the equilibrium, taking into consideration fudw =0, fvdw =
=0, Iuvdw = Q2
P, =Ew, P, = ngo, P, = Gug'o» ) .
' . ~ 2 i
M, = Eud, M,=E‘u.a', G. 3 | (5).
“Section 3. Conditions of Resistance to Rupture or to Alteration ZQQZ
in Elasticity
Lo From egs.(2), (3), (&), (5), we can derive
‘,a' _ P oL E Mey Bﬁ'- uv+ 2"———-—-—' +"'..
R Ep o ' (6)
: P, M, ’ » ! o :
ol = o v, g =c- — %
° v aGp 7 Go 26 resulting in g VEE—“- (7)




Thus, let _%%_, _éé be the greatest dilatation and the greatest transverse;
'slip to which a prism of the same material can be subjected without risk (whereE
o denotes that the forces R,, I, produce no changes in the elasticity, even
over prolonged periods of time). Then, the result for the equations of resist- ;
‘ance will be as follows:

1) If p,, Py, M, are zero, i.e., if there are only dilatations present (ori

properly speaking, flexures produced by the unequal dilatations of the fibers);

we have
Regr>|  numerical maximm of P:‘+:£+Thl'-+ i'(ﬂ..+ﬂ.‘); ' (8);
- : . ~

2) If Py, M,, My, ™,, Ty are zero, i.e., if only slip is present (or tor-

sion), we have

| == " : . i i
To g > _ numerical maximm of <%+—¥-’—) + (i;"' - h:‘ )’-. (9)
: A 2.—-p . ! i
I ’ :

f3.=p

5. If both dilatations and slip are present at the same time, these formu—i
las are no longer valid; any slip, in definite oblique directions, produces
molecular spreading and crowding, which might render such slip relatively
dangerous. This means that the effects of slip coincide with those produced by
dilatation.

However, it is easy to prove that, if &, represents the dilatation taking
place in the direction of the slip g at the point m under consideration, the |
following dilatation will be obtained in a direction making an angle ¢ with the

fiber such that tan 20 = & _:
D - 3,

L0+ LN, (10)
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and that this dilatation (positive or negative) is the greatest dilatation thati
jcan take place about the point m. !

The maximum of eq.(10) must be equated to _%. to obtain the resistance 124@_
'equation applicable to all cases. Let us restrict our present calculation to
'the case in which m,, Ty are negligible, so that, as is well known, 3, = - e

|
|
|
|
3
i
i
|

and eq.(10) becomes*

e | )

Taking into consideration, as is also known, G = —%— E, we will then have

R, or->

numerical maximum Of%(Pl-f- M. + ", ) -

LTS
| =3
8

B — — (12))
x/ E’.‘_E& -+ HL ’+ _+h" '+ a2 .P.'—-h.‘.i ',. !
] L] ¥ 1, L4 1,) :

l

6. This expression reduces to eq.(9) if P,, M,, My are zero and if it is
.assumed that T, = b R, .

Let us note alzo that this expression is simpler and more symmetrical than;
if, with respect to torsion, one would have adhered to the conventional theory
which neglects the skewing.

The expression 1s even further simplified in the most common cases in
which the terms in Py, P,, Py are negligible; however, an extraordinary degree
of simplicity is obtained when the section becomes a circle, a square, or a

four-point star which configuration is frequently used for castings. Then,

b =u' and, if My is the greater of the two moments about the diagonals or

% I discovered this formula in 1837. Poncelet used this formula in his course
of industrial mechanics at the faculty and insisted on the necessity to take
the implications of this formula into consideration. He was kind enough to cite
me in his unpublished reports.




about the larger diameters 2r' of the section, we will have

_ s O |
R, = num. maxnm.l—(-éMdd:g\/M}—f-M,'); (13);
L . - |
| ite of the second fems will red. e e oy
and the quantity of the second term will reduce to — (§M‘¢‘"‘= al\l)t for.
g N

a circle, where M denotes the total moment of the forces. (2&2

I would be completely wrong if the simplicity of these resistance formula;
for cases of simultaneous flexure and torsion would not prove the validity of
the principles used in their derivation.

By eliminating "or >" and ™numerical maximum" from these formulas, they
will also become so-called equations of equal resistance.

Section L. Application to Several Ixamples. Difference from Results of the
Earlier Theories

7. Rectangular specimen stressed perpendicularly to its axis but obliquely;

to the sides of its base. Let b and ¢ be the two sides of the base, a the ‘

length of the specimen clamped at one end, P the force stressing this specimen ;
at the other end, and ¢ the angle made by this force with the side c; we then
obtain [eq.(6)]: ‘
6aP, - . . .
R, = 6—:_,-(bcosg +csing), -
which is a much simpler formula than the formula of the older theory

6aP bsing+ccosep
be "b'sin’g +clcor'y

where only a single moment about an oblique straight line
is used while the other moment of the interior forces is neglected.

If the angle » is 45°, the ratio of the values of P derived from the old
and from the new formula would be 1.08 at ¢ = 1.5b, or 1.25 at ¢ = 2b, and 1.47
at ¢ = 3b, From this it follows that the old formula may give a false security
to the designers, thus inducing them to load the structural parts to more than

10



their load-carrying capacity.

8. Rectangular specimen of short length, clamped at one end and stressed

perpendicularly at the other end. In this case, P, is no longer negligible,

yielding A .
: _Gap 3 5 c\3 .

The value by which the quantity in brackets of the second term exceeds unity

represents the portion of the influence of this transverse component which tendé
to cut the fibers and which had been neglected in the old theory. This excess;
for ¢ = a, 2a, 3a, La is, successively, 3%, 125, 26, L2%.

9. Same specimen, with the weight P uniformly distributed over its upper

surface. I am using this case as an example for the influence of the lateral

pressure on the fibers (No.,). Then, /950
e e P "
and K I " - . .'.:
6 ; P 3 - 5 2
R, = ' L L 1¢
° be 8 (l + a’)' + E (l +';; ;) ° :]'

The influence is much greater than that of the transverse slip since the
quantity in brackets exceeds unity; for ¢ = a, this excess is 11.5% and, for
c = 2a, it is 43%.

Similarly, in the case of the preceding paragraph (No.9), a lateral pres-
sure must be present there, which is difficult to evaluate exactly but whose in-
fluence presumably equals that of the slip.

10. Solids of equal resistance. Taking the slip into consideration will

eliminate a paradox from the theory of these solids, produced by conventional
formulas: It is known that these formulas result in zero thickness at the points

of support. My own formulas furnish no such result, presumably due to the fact

11



that the transverse component Py had been neglected in the conventional for-
mulias.

11. Rectangular specimen, with simultaneous flexure and torsion. Let us

assume that the weight P of the member described in paragraph No.7 acts over

the intermediary of a horizontal lever arm of a length h, so that

L — : |
R, = b'c' (bcosq; +csm<p)’ [ 3 \/x + = (bcos,_'_“m,),] g

Let v = 03 then, the quantity in brackets will exceed unity,

it

for ¢ =b, h = 3, by 0.14 for ¢ = 2b, h = 4, by 0.31;

L}
]

*h =a, by 0.46 h =a, by 0.91.
This constitutes the proportion of the influence of torsion which the new ?

formulas attempt to estimate.

12. Revolving shaft with circular or square cross section, bent and twisted

under the action of two gear trains or two drive belts. The very simple formu~§

la (13) is used in this case. |
13. Horizontal half-circle, clamped or built-in at one end and stressed at:

the other end by a weight. Here, rupture does not take place at the point of

clamping as is the case in straight specimens but at 0.226 of the length, and

the resistance is 1.408 times that of a straight specimen having a length [25;

equal to its diameter.

1. Vertical spiral spring, extended or compressed by a weight P. Iet o

be the radius of the cylinder of the axis, r the radius of the spring of circu~
lar cross section, and © the constant angle made by the axis with the horizon

so that the complete formula will yield
'.-B ” ﬁ-o— )sm + \/a+ sin? + a+ c s’
=5 |5 3) "7 '8 i ? o ‘P

12




This formula clearly shows the separate influences of dilatation or longitudinai
contraction of the wire, of its flexure, the lateral slip of its individual
parts, and its torsion.

I am convinced that this formula is quite useful in experiments on spiral
specimens for determining the magnitude of the quantities R,, for which - un‘c,:’Ll‘L
now - only vague data had been available.

Section 5. Determination of the Displacements of Points of Solid Bodies or
of Their Deformations

15. Using the notations of paragraphs Nos.2 and 3, let )
X, ¥, Z be the coordinates of the point M of the axis
of the body

ds be the element of this axis

before
p be its radius of curvature
> the
e be the angle made, on the section @, by the
displacements.

prolongation of this radius with the principal
axis of the v
—— be the angle of two adjacent osculating planes

® be the characteristic of the variations by

displacement

e YI.E"'—_'axa ’7=aj’ §=10dz, e=de, :
X=-djd’z—-dzd’ y Y=dzd'x — dxd*z, Z=dxd’j-—de’x.‘

I found the following (restricting the calculation in this report to the

case in which m, and Ty are negligible):

Cede T, s e dg dgh . dy
d = @ + (usine +’v§os C)Z —;+(ucose—ysyne) ;-i-u—d—‘——i- v Au";;.j’
g ST ds 1 Jds R '
1=tz




The last term of 3 represents the influence of skewing on the dilatation. The :
term always yields zero components, and moments that generally are zero and al-'
ways are small, which is the reason for the fact that this term had been neg-

lected in paragraph No.2 and will be neglected also here. Then, egs.(5) /952

. i
‘become '
M oose ads . e dgy M, in e ' “dg,

-—-b =———. - __&
.'El‘ :d‘ 6 sme + y E“ = d' -Pcou'+ <" |
m;aa; M a'ﬁ-m;w:m P 1)
‘.;,.—.(d‘ ' 4}‘[‘ —;"‘;} ". .80.‘.""_0“ 8.-—5;' ( )

P"‘P
By eliminating gé,_ n, e, this formula ylelds

"-—.='.D." ‘-'-ai'.# -

LR
i

(15)

'where D, F, T are polynomials not written out here and where everything is
known if €, T, { are sufficiently small to exert no noticeable influence on the
components and lever arms of the forces¥*.

On expanding the first terms in a series by differentiating, with respect
to 8, the known expressions of ds, SS , and -gi- in x, y, 2z and replacing &x,
8y, 8z by €, T, {, three differential equations of the first, second, and third
order would be obtained between these displacements; these equations will not

be given here since they contain a large number of terms. It is sufficient for

me to state that I have been able to 1ntegrate them, yielding

' de.—_Ddx_djf(sz+LF)+dzf(Tqy+t-F)
'd,,'—_-odj-dzf('rdx-ﬂ F)+dxf('rdz+ )
&% = Dds —dz [ (Tdy+ 5 F) + dy [ (Tdw + %‘-,F)-

(16)

% In the opposite case, the same differential equations would be obtained, ex-
cept that the second terms would then contain €, T, C and that only the dif-
ficulty of integration would be added.
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17. It may be surprising to encounter in my equations a certain entirely
new quantity € which no one so far had ever taken into consideration and which °

is more or less on the same footing as the angles of contingence and of plane

osculation ds and ds . I believe that it is easy to demonstrate on an ex—

. o T ‘
ample that this angular displacement of the radius of curvature along the sec- -

tion must necessarily enter our analysis.

Let us imagine an elastic bar of double curvature, confined on all sides
in a fixed and rigid conduit, but still rotatable about itself in view of the/953
fact that the cross section of this bar is assumed to be circular as that of thé
conduit. In this motion, it is assumed that the longest fibers are forcedly
shortened and the shortest fibers are elongated and that also torsions are
present if the rotations impressed on all cross sections had not been the same:
The elasticity of the body, in all cases, would have strongly resisted such
displacements of its points.

However, neither the radii of curvature nor the osculating planes of the
axis will have changed in any manner whatsoever.

Consequently, the so-called resistances to bending and torsion do not de-
pend uniquely on the variation in the angles of contingence or on the angles in-
cluded between the osculating planes; these resistances depend to the same de-
gree on another factor, namely, on the type of displacement that had taken place
in the mentioned example; this is exactly, on each cross section, the angular
displacement designated by me as €.

It is thus obvious that it is useless to look for a solution of the prob-
lem of deformation of elastic specimens with double curvature when restricting
the calculation to a consideration of only the points on their axis. It is

absolutely necessary to take the events occurring outside of this axis into

15




consideration. It seems to me that this finding explains an error by lLagrange
which also had been made by Poisson¥* despite the fact that this error had been |
pointed out by Binet as early as 181L.

Section 6. Idimit Conditions. General Method for Determining Unknown Reactions
and Interactions in a Given System of Solid Specimens

This method consists in defining the displacements of material points of
the specimens, by leaving the magnitudes, the levers, and the directions of thei
involved forces in an indeterminate form. Once the displacemen£s are expressed
as a function of these wanted quantities, definite conditions can be estab-
lished which must be satisfied at the points of support or clamping or at the
junctions of different members, or else at the points of linkage of different
parts into which one and the same structural member must be subdivided because %

t

of the fact that the displacements there are expressed by different equations. ?
In this manner, one finally will have as many equations as unknowns since, in |
problems of physical mechanics, obviously no indetermination whatsoever can
exigt.

However, these unknown forces frequently occur in an indefinite number: Re-
actions of the walls of the clamping device or the interactions of members that
osculate over a portion of their gurface; actions of other parts of the same
member which have to be treated in this manner, for example,in the singular /954
case of bending of a ring or of a closed dynamometric spring all belong into
this group of unknown forces. How can one enter all these small forces in the

calculation? To solve this problem, I developed a method in 1837 which is by no

means arbitrary and has always been successful. Iet px, py, p. be the com-

* Mécan., Second Edition, Nos.317 and 318.
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ponents, parallel to the axes, of one of the small forces and let a, b, ¢ be

the coordinates of its point of application; its moment about a straight line
parallel to x, laid through the point of the axis of the body whose coordinates;
are x, y, 2, will be (b - y)px - (¢ - z)p,. However, required here are only
the sums of the moments and components parallel to the three coordinates; there%

fore, let A, A,, A, be these sums so that the sums of the moments will become

B, + 42— A,J‘,l | B, + Ax — Az, B, + A_,j -- A,::, .' ;
. _ . . ST ERLAY
from which it follows that all that is necessary to know about these forces, no;
matter what their number might be, can be expressed for any portion of the
bodies by six indeterminates at most.
The subdivision of the structural members into various parts makes it comr;
pletely unnecessary to use the transcendental discontinuity formulas which

Poisson had utilized®. It is only necessary to connect the axes of the indivi-

dual parts of one and the'same member by a common tangent or, rather, by the

P,
Gw
with double curvature, it is also necessary to give,at the limits, the value re-

, g" = —g%- which will produce the slip. In specimens

small angles g =

ferring to the angular displacement

emp (M LYol (M L d RN
=P \Ex T &Gy P\Ew — &'Ga) ©* &

It will be stipulated either that this displacement is zero which would apply to
free ends, or that it is such that the principal axes of the section have re-

mained stationary which is the case for clampings, and so on.

* Mécan., No.32k.
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